QscR-mediated transcriptional activation of serine cycle genes in Methylobacterium extorquens AM1.
نویسندگان
چکیده
QscR, a LysR-type regulator, is the major regulator of assimilatory C1 metabolism in Methylobacterium extorquens AM1. It has been shown to interact with the promoters of the two operons that encode the majority of the serine cycle enzymes (sga-hpr-mtdA-fch for the qsc1 operon and mtkA-mtkB-ppc-mclA for the qsc2 operon), as well as with the promoter of glyA and its own promoter. To obtain further insights into the mechanisms of this regulation, we mapped transcriptional start sites for the qsc1 and qsc2 operons and for glyA via primer extension analysis. We also identified the specific binding sites for QscR upstream of the qsc1 and qsc2 operons and glyA by DNase I footprinting. The QscR protected areas were located at nucleotides -216 to -165, nucleotides -59 to -26, and nucleotides -72 to -39 within the promoter-regulatory regions upstream of transcriptional starts of, respectively, qsc1, qsc2 and glyA. To examine the nature of the metabolic signal that may influence QscR-mediated regulation of the serine cycle genes, Pqsc1::xylE translational fusions were constructed and expression of XylE monitored in the wild-type strain, as well as in knockout mutants defective in a variety of methylotrophy functions. The data from these experiments pointed toward formyl-H4F being a coinducer of QscR and possibly the major signal in the regulation of the serine cycle in M. extorquens AM1. The ability of formyl-H4F to enhance the binding of QscR to a specific region upstream of one of the serine cycle operons was demonstrated in gel retardation experiments.
منابع مشابه
QscR, a LysR-type transcriptional regulator and CbbR homolog, is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1.
A new gene, qscR, encoding a LysR-type transcriptional regulator that is a homolog of CbbR, has been characterized from the facultative methylotroph Methylobacterium extorquens AM1 and shown to be the major regulator of the serine cycle, the specific C1 assimilation pathway. The qscR mutant was shown to be unable to grow on C1 compounds, and it lacked the activity of serine-glyoxylate aminotran...
متن کاملIdentification and mutation of a gene required for glycerate kinase activity from a facultative methylotroph, Methylobacterium extorquens AM1.
A gene (gckA) responsible for the activity of glycerate kinase has been identified within a chromosomal fragment of the serine cycle methylotroph Methylobacterium extorquens AM1. A mutation in gckA leads to a specific C1-negative phenotype. The polypeptide sequence derived from gckA showed high similarity to a product of ttuD essential for tartrate metabolism in Agrobacterium vitis. Our data su...
متن کاملGenetics of the serine cycle in Methylobacterium extorquens AM1: identification of sgaA and mtdA and sequences of sgaA, hprA, and mtdA.
In a previous paper, we reported identification of the 5' part of hprA of Methylobacterium extorquens AM1, which encodes the serine cycle enzyme hydroxypyruvate reductase (L. V. Chistoserdova and M. E. Lidstrom, J. Bacteriol. 174:71-77, 1992). Here we present the complete sequence of hprA and partial sequence of genes adjacent to hprA. Upstream of hprA, the 3' part of an open reading frame was ...
متن کاملGenetics of the serine cycle in Methylobacterium extorquens AM1: cloning, sequence, mutation, and physiological effect of glyA, the gene for serine hydroxymethyltransferase.
The gene (glyA) of Methylobacterium extorquens AM1 encoding serine hydroxymethyltransferase (SHMT), one of the key enzymes of the serine cycle for C1 assimilation, was isolated by using a synthetic oligonucleotide with a sequence based on amino acid sequence conserved in SHMTs from different sources. The amino acid sequence deduced from the gene revealed high similarity to those of known SHMTs....
متن کاملIdentification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD.
The glyoxylate regeneration cycle (GRC) operates in serine cycle methylotrophs to effect the net conversion of acetyl coenzyme A to glyoxylate. Mutants have been generated in several genes involved in the GRC, and phenotypic analysis has been carried out to clarify their role in this cycle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 21 شماره
صفحات -
تاریخ انتشار 2005